FEATURES

- 3 MHz Clock Rate
- Single 5V supply
- Low Power CMOS Technology
 - Max Write Current: 5 mA
 - Read Current: 1.0 mA
 - Standby Current: 5 μA
- Organization
 - 1024 x 8 for 25C080
 - 2048 x 8 for 25C160
- 16 Byte Page
- Self-timed ERASE and WRITE Cycles
- Block Write Protection
 - Protect none, 1/4, 1/2, or all of Array
- Built-in Uncommanded Write Protection
 - Power On/Off Data Protection Circuitry
 - Write Latch
 - Write Protect Pin
- High Reliability
 - Endurance: 10M cycles (guaranteed)
 - Data Retention: >200 years
 - ESD protection: >4000 V
- 8-pin PDIP/SOIC Packages
- Temperature ranges supported
 - Commercial (C): 0°C to +70°C
 - Industrial (I): -40°C to +85°C
 - Automotive (E): -40°C to +125°C

DESCRIPTION

The Microchip Technology Inc. 25C080/160 are 8K and 16K bit Serial Electrically Erasable PROMs. The memory is accessed via a simple Serial Peripheral Interface (SPI™) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a chip select (CS) input, allowing any number of devices to share the same bus.

There are two other inputs that provide the end user with additional flexibility. Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, allowing the host to service higher priority interrupts. Also write operations to the Status Register can be disabled via the write protect pin (WP). This can be used to limit end user write capability to the array.
1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

- \(V_{CC} \) .. 7.0V
- All inputs and outputs w.r.t. \(V_{SS} \) -0.6V to \(V_{CC} \) +1.0V
- Storage temperature -65˚C to 150˚C
- Ambient temperature under bias -65˚C to 125˚C
- Soldering temperature of leads (10 seconds) .. +300˚C
- ESD protection on all pins 4kV

*Stresses above those listed under ‘Maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended period of time may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Chip Select Input</td>
</tr>
<tr>
<td>SO</td>
<td>Serial Data Output</td>
</tr>
<tr>
<td>SI</td>
<td>Serial Data Input</td>
</tr>
<tr>
<td>SCK</td>
<td>Serial Clock Input</td>
</tr>
<tr>
<td>WP</td>
<td>Write Protect Pin</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>VCC</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>HOLD</td>
<td>Hold Input</td>
</tr>
</tbody>
</table>

TABLE 1-2: DC CHARACTERISTICS

Applicable over recommended operating ranges shown below unless otherwise noted.
- \(V_{CC} = 4.5V \) to 5.5V
- Commercial (C): \(T_{amb} = 0^\circ \)C to +70°C
- Industrial (I): \(T_{amb} = -40^\circ \)C to +85°C
- Automotive (E): \(T_{amb} = -40^\circ \)C to +125°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level input voltage</td>
<td>VIL1</td>
<td>2.0</td>
<td>VCC+1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low level input voltage</td>
<td>VIL1</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low level output voltage</td>
<td>VOL</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td>(I_{OL} = 2.1) mA</td>
</tr>
<tr>
<td>High level output voltage</td>
<td>VOH</td>
<td>—</td>
<td>VCC-0.5</td>
<td>V</td>
<td>(I_{OH} = -400) µA</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>IIL</td>
<td>-10</td>
<td>10</td>
<td>µA</td>
<td>(CS = V_{IH}, V_{IN} = V_{SS}) to (V_{CC})</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>IOL</td>
<td>-10</td>
<td>10</td>
<td>µA</td>
<td>(CS = V_{IH}, V_{OUT} = V_{SS}) to (V_{CC})</td>
</tr>
<tr>
<td>Internal Capacitance</td>
<td>CINT</td>
<td>7</td>
<td>pF</td>
<td></td>
<td>(T_{amb} = 25^\circ), (F_{CLK} = 3.0) MHz, (V_{CC} = 5.5V) (Note)</td>
</tr>
<tr>
<td>Operating Current</td>
<td>ICC write</td>
<td>—</td>
<td>5 mA</td>
<td>VCC = 5.5V</td>
<td></td>
</tr>
<tr>
<td>ICC read</td>
<td>ICC read</td>
<td>—</td>
<td>1 mA</td>
<td>VCC = 5.5V; 3 MHz</td>
<td></td>
</tr>
<tr>
<td>ICC read</td>
<td>ICC read</td>
<td>—</td>
<td>500 µA</td>
<td>VCC = 5.5V; 2 MHz</td>
<td></td>
</tr>
<tr>
<td>Standby Current</td>
<td>ICCS</td>
<td>—</td>
<td>5 µA</td>
<td>(CS = V_{CC} = 5.5V; V_{IN} = 0V) or (V_{CC})</td>
<td></td>
</tr>
<tr>
<td>ICCS</td>
<td>—</td>
<td>2 µA</td>
<td>(CS = V_{CC} = 2.5V; V_{IN} = 0V) or (V_{CC})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This parameter is periodically sampled and not 100% tested.
FIGURE 1-2: SERIAL INPUT TIMING

FIGURE 1-3: SERIAL OUTPUT TIMING

FIGURE 1-4: HOLD TIMING
TABLE 1-3: AC CHARACTERISTICS

Applicable over recommended operating ranges shown below unless otherwise noted.

VCC = 4.5V to 5.5V

Commercial (C): Tamb = 0°C to +70°C
Industrial (I): Tamb = -40°C to +85°C
Automotive (E): Tamb = -40°C to +125°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>fSCK</td>
<td>Clock Frequency</td>
<td>—</td>
<td>3</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>tCSS</td>
<td>CS Setup Time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCSH</td>
<td>CS Hold Time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCSD</td>
<td>CS Disable Time</td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tSU</td>
<td>Data Setup Time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHD</td>
<td>Data Hold Time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tr</td>
<td>CLK Rise Time</td>
<td>—</td>
<td>2</td>
<td>μs</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>tf</td>
<td>CLK Fall Time</td>
<td>—</td>
<td>2</td>
<td>μs</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>tHi</td>
<td>Clock High Time</td>
<td>125</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tLo</td>
<td>Clock Low Time</td>
<td>125</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCLd</td>
<td>Clock Delay Time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tv</td>
<td>Output Valid from Clock Low</td>
<td>—</td>
<td>150</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHo</td>
<td>Output Hold Time</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDis</td>
<td>Output Disable Time</td>
<td>—</td>
<td>200</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHS</td>
<td>HOLD Setup Time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHH</td>
<td>HOLD Hold Time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHz</td>
<td>HOLD Low to Output High-Z</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHV</td>
<td>HOLD High to Output Valid</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tWC</td>
<td>Internal Write Cycle Time</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>—</td>
<td>Endurance</td>
<td>10M</td>
<td>—</td>
<td>E/W Cycles</td>
<td>25°C, Vcc = 5.0V, Block Mode</td>
</tr>
</tbody>
</table>

Note 1: This parameter is periodically sampled and not 100% tested.

2: tWC begins on the rising edge of CS after a valid write sequence and ends when the internal self-timed write cycle is complete.

3: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our BBS or website.
2.0 PRINCIPLES OF OPERATION

The 25C080/160 is an 1024/2048 byte EEPROM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC16C64/74 microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly with software.

The 25C080/160 contains an 8-bit instruction register. The part is accessed via the SI input, with data being clocked in on the rising edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation. If the WPEN bit in the Status Register is set, the WP pin must be held high to allow writing to the non-volatile bits in the register.

Table 2-2 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred MSB first, LSB last.

Data is sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 25C080/160 in ‘HOLD’ mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted.

2.1 Write Enable (WREN) and Write Disable (WRDI)

The 25C080/160 contains a write enable latch. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch. The following is a list of conditions under which the write enable latch will be reset:

- Power-up
- WRDI instruction executed
- WRSR instruction executed
- WRITE instruction executed

2.2 Read Status Register (RDSR)

The RDSR instruction provides access to the status register. The status register may be read at any time, even during a write cycle. The status register is formatted as follows:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPEN X</td>
<td>X</td>
<td>X</td>
<td>BP1</td>
<td>BP0</td>
<td>WEL</td>
<td>WIP</td>
<td></td>
</tr>
</tbody>
</table>

The Write-In-Process (WIP) bit indicates whether the 25C080/160 is busy with a write operation. When set to a '1' a write is in progress, when set to a '0' no write is in progress. This bit is read only.

The Write Enable Latch (WEL) bit indicates the status of the write enable latch. When set to a '1' the latch allows writes to array, when set to a '0' the latch prohibits writes to array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the status register. This bit is read only.

The Block Protection (BP0 and BP1) bits indicate which blocks are currently write protected. These bits are set by the user issuing the WRSR instruction. These bits are non-volatile.

The Write Protect Enable (WPEN) bit is a non-volatile bit that is available as an enable bit for the WP pin. The Write Protect (WP) pin and the Write Protect Enable (WPEN) bit in the status register control the programmable hardware write protect feature. Hardware write protection is enabled when WP pin is low and the WPEN bit is high. Hardware write protection is disabled when either the WP pin is high or the WPEN bit is low. When the chip is hardware write protected, only writes to non-volatile bits in the status register are disabled. See Table 2-3 for matrix of functionality on the WPEN bit and Figure 2-1 for a flowchart of Table 2-3.

See Figure 3-5 for RDSR timing sequence.

2.3 Write Status Register (WRSR)

The WRSR instruction allows the user to select one of four levels of protection for the array by writing to the appropriate bits in the status register. The array is divided up into four segments. The user has the ability to write protect none, one, two, or all four of the segments of the array. The partitioning is controlled as illustrated in table below.

See Figure 3-6 for WRSR timing sequence.

<table>
<thead>
<tr>
<th>TABLE 2-1: ARRAY PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-2: INSTRUCTION SET

<table>
<thead>
<tr>
<th>Instruction Name</th>
<th>Instruction Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WREN</td>
<td>0000 0110</td>
<td>Set the Write Enable Latch (Enable Write Operations)</td>
</tr>
<tr>
<td>WRDI</td>
<td>0000 0100</td>
<td>Reset the Write Enable Latch (Disable Write Operations)</td>
</tr>
<tr>
<td>RDSR</td>
<td>0000 0101</td>
<td>Read Status Register</td>
</tr>
<tr>
<td>WRSR</td>
<td>0000 0001</td>
<td>Write Status Register (Write Protect Enable and Block Write Protection Bits)</td>
</tr>
<tr>
<td>READ</td>
<td>0000 0011</td>
<td>Read Data from Memory Array beginning at selected address</td>
</tr>
<tr>
<td>WRITE</td>
<td>0000 0010</td>
<td>Write data to Memory Array beginning at Selected Address</td>
</tr>
</tbody>
</table>

TABLE 2-3: WRITE PROTECT FUNCTIONALITY MATRIX

<table>
<thead>
<tr>
<th>WPEN</th>
<th>WP</th>
<th>WEL</th>
<th>Protected Blocks</th>
<th>Unprotected Blocks</th>
<th>Status Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>Protected</td>
<td>Protected</td>
<td>Protected</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>Protected</td>
<td>Writable</td>
<td>Writable</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>0</td>
<td>Protected</td>
<td>Protected</td>
<td>Protected</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>1</td>
<td>Protected</td>
<td>Writable</td>
<td>Protected</td>
</tr>
<tr>
<td>X</td>
<td>High</td>
<td>0</td>
<td>Protected</td>
<td>Protected</td>
<td>Protected</td>
</tr>
<tr>
<td>X</td>
<td>High</td>
<td>1</td>
<td>Protected</td>
<td>Writable</td>
<td>Writable</td>
</tr>
</tbody>
</table>

FIGURE 2-1: WRITE TO STATUS REGISTER AND/OR ARRAY FLOWCHART

- **CS Returns High**
- **Write to Status Reg?**
 - **Yes**
 - **WEL = 1?**
 - **Yes**
 - **WP is low?**
 - **Yes**
 - **WPEN = 1?**
 - **Yes**
 - **Write to Status Register**
 - **No**
 - **No**
 - **Write to the Unprotected Block**
 - **No**
 - **No**
 - **WPEN = 1?**
 - **Yes**
 - **Write to Status Register**
 - **No**
 - **WP is low?**
 - **Yes**
 - **Write to Status Register**
 - **No**
 - **No**
 - **Do not write to Status Register**
- **No**
 - **Write to array?**
 - **No**
 - **Continue**
 - **Yes**
 - **To other Commands**
 - **Do not write to Array**
 - **From other Commands**
3.0 DEVICE OPERATION

3.1 Clock and Data Timing

Data input on the SI pin is latched on the rising edge of SCK. Data is output on the SO pin by the falling edge of SCK.

3.2 Read Sequence

The part is selected by pulling CS low. The 8-bit read instruction is transmitted to the 25C080/160 followed by the 16-bit address, with the five (25C160) or six (25C080) MSBs of the address being don’t care bits. After the correct read instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal address pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached ($3FF for 25C080, $7FF for 25C160) the address counter rolls over to address $000 allowing the read cycle to be continued indefinitely. The read operation is terminated by setting CS high (see Figure 3-1).

3.3 Write Sequence

Prior to any attempt to write data to the 25C080/160, the write enable latch must be set by issuing the WREN instruction (Figure 3-2). This is done by setting CS low and then clocking out the proper instruction into the 25C080/160. After all eight bits of the instruction are transmitted, the CS must be brought high to set the write enable latch. If the write operation is initiated immediately after the WREN instruction without CS being brought high, the data will not be written to the array because the write enable latch will not have been properly set.

Once the write enable latch is set, the user may proceed by setting CS low, issuing a write instruction, followed by the 16-bit address, with the five (25C160) or six (25C080) MSBs of the address being don’t care bits, and then the data to be written. Up to 16 bytes of data can be sent to the 25C080/160 before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page. A page address begins with XXXX XXXX XXXX 0000 and ends with XXXX XXXX XXXX 1111. If the internal address counter reaches XXXX XXXX XXXX 1111 and the clock continues, the counter will roll back to the first address of the page and overwrite any data in the page that may have been written.

For the data to be actually written to the array, the CS must be brought high after the least significant bit (D0) of the nth data byte has been clocked in. If CS is brought high at any other time, the write operation will not be completed. See Figure 3-3 and Figure 3-4 for more detailed illustrations on the byte write sequence and the page write sequence, respectively.

While the write is in progress, the status register may be read to check the status of the WPEN, WIP, WEL, BP1, and BP0 bits. A read attempt of a memory array location will not possible during a write cycle. When cycle is completed, the write enable latch is reset.

3.4 Data Protection

The following protection has been implemented to prevent inadvertent writes to array:

- The write enable latch is reset on power-up.
- A write enable instruction must be issued to set the write enable latch.
- After a byte write, page write, or status register write, the write enable latch is reset.
- CS must be set high after the proper number of clock cycles to start an internal write cycle.
- Access to array during an internal write cycle is ignored and programming is continued.

3.5 Power On State

The 25C080/160 powers on in the following state:

- The device is in low power standby mode.
- The write enable latch is reset.
- SO is in high impedance state.
- The chip is deselected.
- A low level on CS is required to enter active state.
FIGURE 3-1: READ SEQUENCE

CS

SCK

SI

SO

FIGURE 3-2: WRITE ENABLE SEQUENCE

CS

SCK

SI

SO

FIGURE 3-3: WRITE SEQUENCE

CS

SCK

SI

SO
FIGURE 3-4: PAGE WRITE SEQUENCE

FIGURE 3-5: READ STATUS REGISTER SEQUENCE

FIGURE 3-6: WRITE STATUS REGISTER SEQUENCE
4.0 PIN DESCRIPTIONS

4.1 Chip Select (CS)

A low level on this pin selects the device. A high level deselects the device and forces it into standby mode. However, a programming cycle which is already initiated and/or in progress will be completed, regardless of the CS input signal. If CS is brought high during a program cycle, the device will go in standby mode as soon as the programming cycle is complete. As soon as the device is deselected, SO goes to the high impedance state, allowing multiple parts to share the same SPI bus. A low to high transition on CS after a valid write sequence is what initiates an internal write cycle. After power-up, a low level on CS is required prior to any sequence being initiated.

4.2 Serial Input (SI)

The SI input pin is used to transfer data serially into the device. It receives instructions, addresses, and data to be written to the memory. Input is latched on the rising edge of the serial clock.

It is possible for the SI pin and the SO pin to be tied together. With SI and SO tied together, two way communication of data can occur using only one microcontroller I/O line.

4.3 Serial Output (SO)

The SO output pin is used to transfer data serially out of the 25C080/160. During a read cycle, data is shifted out on this pin. Data is shifted out on the falling edge of the serial clock.

It is possible for the SI pin and the SO pin to be tied together. With SI and SO tied together, two way communication of data can occur using only one microcontroller I/O line.

4.4 Serial Clock (SCK)

The SCK is used to synchronize the communication between a master and the 25C080/160. Instructions, addresses, or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.

4.5 Write Protect (WP)

This pin is used in conjunction with the WPEN bit in the status register to prohibit writes to the non-volatile bits in the status register. When WP is low and WPEN is high, writing to the non-volatile bits in the status register is disabled. All other operations function normally. When WP is high, all functions, including writes to the non-volatile bits in the status register operate normally. WP going low during a status register write sequence will disable writing to the status register. If an internal write cycle has already begun, WP going low will have no effect on the write.

The WP pin function is blocked when the WPEN bit in the status register is low. This allows the user to install the 25C080/160 in a system with WP grounded and still be able to write to the status register. The WP pin functions will be enabled when the WPEN bit is set high.

4.6 Hold (HOLD)

The HOLD pin is used to suspend transmission to the 25C080/160 while in the middle of a serial sequence without having to re-transmit the entire sequence over at a later time. It should be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high to low transition. The 25C080/160 must remain selected during this sequence. The SI, SCK, and SO pins are in a high impedance state during the time the part is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume.
25C080/160 Product Identification System

To order or to obtain information (e.g., on pricing or delivery), please use the listed part numbers, and refer to the factory or the listed sales offices.

| 25C080/160 – E / P | Package: P = Plastic DIP (300 mil body), 8 lead
 SN = Plastic SOIC (150 mil body), 8 lead |
|-------------------|---|
| | Temperature Range: Blank = 0°C to +70°C
 I = -40°C to +125°C
 E = -40°C to +125°C |
| Device: 25C080/160 | SPI Bus Serial EEPROM
 25C080T/160T | SPI Bus Serial EEPROM (Tape and Reel) |

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588

Dayton
Microchip Technology Inc.
Suite 150
Two Prestige Place
Miamisburg, OH 45342
Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (Continued)
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905 405-6279 Fax: 905 405-6253

ASIA/PACIFIC
China
Microchip Technology
Unit 406 of Shanghai Golden Bridge
Mansion
2077 Yan’an Road West, Hongqiao District
Shanghai, Peoples Republic of China
Tel: 86 21 6275 6060 x 406

Hong Kong
Microchip Technology
RM 3801B, Tower Two
Metropiazza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431

India
Microchip Technology
No. 6, Legacy, Convent Road
Bangalore 560 025 India
Tel: 91 80 526 3148 Fax: 91 80 558 6606

Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934

ASIA/PACIFIC (Continued)
Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850

Taiwan
Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 1628 850903 Fax: 44 1628 850178

France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Munich, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleone Pas Taurus 1
Viale Colleone 1
20041 Agrate Brianza
Milan Italy
Tel: 39 39 6899939 Fax: 39 39 689 9883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

7/30/96

All rights reserved. © 1996, Microchip Technology Incorporated, USA.